
May 3, 2013

OpenACC Accelerator Directives

2

OpenACC is ...

 An API
 Inspired by OpenMP
 Implemented by Cray, PGI, CAPS
 Includes functions to query device(s)

 Evolving
 Plan to integrate into OpenMP
 Support of the 1.0 specification has not resulted in portable code (more later)

How can I get started with OpenACC?

OpenACC.org
Quick reference guide (OpenMP programmers)
Specifications: 1.0 and 2.0 draft
Classes

OpenACC GPU Prog. Workshop
Joint workshop with PSC, Xsede, Nvidia
Targeted PGI implementation

http://www.openacc.org/
http://www.psc.edu/index.php/training/openacc-gpu-programming
http://www.openacc.org/
http://www.psc.edu/index.php/training/openacc-gpu-programming

OpenACC on Blue Waters

Cray
module load PrgEnv­cray craype­accel­nvidia35
Caution: OpenMP is also enabled by default
Directly generates ptx assembly for Nvidia accel.

PGI
module load PrgEnv­pgi cudatoolkit
Generates CUDA intermediate

Blue Waters OpenACC compiler table

https://bluewaters.ncsa.illinois.edu/openacc
https://bluewaters.ncsa.illinois.edu/openacc

Support for directives varies: Cray

 61 #pragma acc kernels loop
 62 for(int j = 1; j < n­1; j++)
 63 {
 64 #pragma acc loop gang(16) vector(32)
 65 for(int i = 1; i < m­1; i++)
 66 {
 67 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i­1]
 68 + A[j­1][i] + A[j+1][i]);
 69 }
 70 }

arnoldg@jyc1:~/openacc/wkshp> make laplace2d
cc ­Gp ­h acc,noomp,msgs ­fpic ­dynamic ­c ­o laplace2d.o
laplace2d.c
WARNING: Ignoring gang clause on acc_loop at main:65
WARNING: Ignoring gang clause on acc_loop at main:77

Support for directives varies: PGI

39 !$acc data copyin(sendbuf) copyout(recvbuf)
40
41 !$acc host_data use_device(sendbuf,recvbuf)
42 call MPI_ALLTOALL (sendbuf,n,mpi_complex,recvbuf,n,mpi_complex,comm_col,ierr)
43 !$acc end host_data
44
45 !$acc end data

arnoldg@h2ologin1:~/buaria> ftn ­acc test.f90
PGF90­S­0155­A data clause for a variable appears within another region with a data clause
for the same variable sendbuf (test.f90: 41)
PGF90­S­0155­A data clause for a variable appears within another region with a data clause
for the same variable recvbuf (test.f90: 41)
 0 inform, 0 warnings, 2 severes, 0 fatal for MAIN

Runtime differences using Cray's examples and PGI compiler:
 [code from : man openacc.examples]

PGI runtime incorrect
 47 !!$ Compute a checksum
 48 !$acc parallel copyin(a)
 49 total = 0
 50 !$acc loop reduction(+:total)
 51 DO j = 1,M
 52 total = total + a(j)
 53 ENDDO
 54 !$acc end loop
 55 !$acc end parallel

PGI runtime valid
 47 !!$ Compute a checksum
 48 total = 0
 49 !$acc kernels loop copyin(a) reduction(+:total)
 50 DO j = 1,M
 51 total = total + a(j)
 52 ENDDO
 53
 54 !$acc end kernels loop

Tuning differences: Cray and PGI
 145 !$acc parallel num_gangs(1) vector_length(3072)
 146 !!$acc kernels
 147 !!data copy(part),copyin(fxy),create(nn,mm,dxp,dyp,np,mp,dx,dy,vx,vy)
 148 do 10 j = 1, nop
 149 c find interpolation weights
 150 nn = part(1,j)
 151 mm = part(2,j)
 152 dxp = part(1,j) ­ real(nn)
 153 dyp = part(2,j) ­ real(mm)
 154 nn = nn + 1
 155 mm = mm + 1
 156 amx = 1.0 ­ dxp
 157 mp = mm + 1
 158 amy = 1.0 ­ dyp
 159 np = nn + 1
 160 c find acceleration
 161 dx = dyp*(dxp*fxy(1,np,mp) + amx*fxy(1,nn,mp)) + amy*(dxp*fxy(1,np
 162 1,mm) + amx*fxy(1,nn,mm))

arnoldg@jyc1:~/Mori/pic2.0­acc­f> ftn ­h acc ­c push2.f
!$acc parallel num_gangs(1) vector_length(3072)
ftn­7271 crayftn: WARNING GPUSH2L, File = push2.f, Line = 145
 Unsupported OpenACC vector_length expression: Converting 3072 to
1024.

OpenACC performance tools

Cray
Perftools support
Accelerator counters
A multi­step process (for now)
CRAY_ACC_DEBUG=1|2|3

PGI
Profiling via PGI_ACC_TIME=1

 Tracing via PGI_ACC_NOTIFY=1|3

See the Blue Waters documentation

http://bluewaters.ncsa.illinois.edu/openacc-and-cuda-profiling
http://bluewaters.ncsa.illinois.edu/openacc-and-cuda-profiling

OpenACC pitfalls

Beware of silent failure modes
Omitting craype­accel­nvidia35 or cudatoolkit
­g flag breaks the Cray OpenACC runtime environment

CRAY_ACC_ERROR ...
CRAY_CUDA_PROXY=1 (sharing the Accelerator in a node)

If code fits within the Accelerator memory, results are fine
CUDA_ERROR_OUT_OF_MEMORY

 Incorrect results but no CUDA_ errors

OpenMP and OpenACC should not be nested within your code at this time

May 3, 2013

CRAY_CUDA_PROXY
MPICH_RDMA_ENABLED_CUDA
MPICH_G2G_PIPELINE

export CRAY_CUDA_PROXY=[1|0]

From the man pages [man aprun]:

Enables execution in simultaneous contexts for GPU­equipped nodes (
Hyper Q) when set to 1 or on. The default is 1. Debugging is only
supported with the CUDA proxy disabled. To disable CUDA proxy,
set to 0 or off

module unload cray-mpich2

module load cray-mpich2/5.6.4

export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH

http://blogs.nvidia.com/2012/08/unleash-legacy-mpi-codes-with-keplers-hyper-q/
http://blogs.nvidia.com/2012/08/unleash-legacy-mpi-codes-with-keplers-hyper-q/

Comparison with a serial OpenACC
sample code
time aprun -n 2 -N 1 ./fpic2_acc
 Initial Field, Kinetic and Total Energies:
 0.0000000E+00 0.1677870E+08 0.1677870E+08
 Initial Field, Kinetic and Total Energies:
 0.0000000E+00 0.1677870E+08 0.1677870E+08
…
real 0m41.581s
user 0m0.136s
sys 0m0.040s

time aprun -n 2 -N 2 ./fpic2_acc
 Initial Field, Kinetic and Total Energies:
 0.0000000E+00 0.1677870E+08 0.1677870E+08
 Initial Field, Kinetic and Total Energies:
 0.0000000E+00 0.1677870E+08 0.1677870E+08
…
real 0m53.325s
user 0m0.136s
sys 0m0.036s

2 GPUs

Sharing 1 GPU

CRAY_CUDA_PROXY=0, error message

time aprun -n 2 -N 2 ./fpic2_acc
call to cuCtxCreate returned error 101: Invalid device
CUDA driver version: 5000
[NID 00080] 2013-05-09 10:30:50 Apid 170090: initiated application termination
Application 170090 exit codes: 1
Application 170090 resources: utime ~4s, stime ~0s, Rss ~270056, inblocks ~1659,
outblocks ~4288

real0m4.868s
user0m0.120s
sys 0m0.048s

MPICH_RDMA_ENABLED_CUDA
Module load cray­mpich2/5.6.4 or later
See also: GPUDirect

From the man pages [man mpi]:

 MPICH_RDMA_ENABLED_CUDA
 If set, allows the MPI application to pass GPU pointers
 directly to point­to­point and collective communication
 functions. Currently, if the send or receive buffer for a
 point­to­point or collective communication is on the GPU,
 the network transfer and the transfer between the host CPU
 and the GPU are pipelined to improve performance. Future
 implementations may use an RDMA­based approach to write/read
 data directly to/from the GPU, bypassing the host CPU.

 Default: not set

https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect

MPICH_G2G_PIPELINE

 MPICH_G2G_PIPELINE
 If nonzero, the device­host and network transfers will be
 overlapped to pipeline GPU­to­GPU transfers. Setting
 MPICH_G2G_PIPELINE to N will allow N GPU­to­GPU messages to
 be efficiently in­flight at any one time. If
 MPICH_G2G_PIPELINE is nonzero but MPICH_RDMA_ENABLED_CUDA is
 disabled, MPICH_G2G_PIPELINE will be turned off. If
 MPICH_RDMA_ENABLED_CUDA is enabled but MPICH_G2G_PIPELINE is
 0, the default value is set to 16. Pipelining is never used
 on Aries networks for messages with sizes >= 8 KB and < 128
 KB.

 Default: not set

MPICH_RDMA_ENABLED_CUDA ,
MPICH_G2G_PIPELINE (latency)

arnoldg@jyc1:~/osu-micro-benchmarks-4.0.1/mpi/collective>
> export MPICH_G2G_PIPELINE=1
> aprun -n 32 -N 1 ./osu_alltoall -d openacc | tail -4
Size Avg Latency(us)
262144 15232.80
524288 23825.47
1048576 39943.72

> export MPICH_G2G_PIPELINE=4
> aprun -n 32 -N 1 ./osu_alltoall -d openacc | tail -4
262144 10815.72
524288 17106.18
1048576 28805.91

Don't set
MPICH_G2G_PIPELINE=1

set
MPICH_G2G_PIPELINE=4
(or greater, remember Cray
defaults it to 16 if unset)

mailto:arnoldg@jyc1
mailto:arnoldg@jyc1

MPICH_RDMA_ENABLED_CUDA ,
MPICH_G2G_PIPELINE (bandwidth)

> aprun -n 2 -N 1 ./osu_bibw D D
OSU MPI-OPENACC Bi-Directional Bandwidth Test v4.0.1
Send Buffer on DEVICE (D) and Receive Buffer on DEVICE (D)
Size Bi-Bandwidth (MB/s)
131072 631.32
262144 931.28
524288 1227.69
1048576 1417.43
2097152 1676.00
4194304 1649.22

mpi/pt2pt> aprun -n 2 -N 1 ./osu_bibw D D | tail -7
131072 639.54
262144 946.22
524288 1253.30
1048576 1433.01
2097152 1700.69
4194304 1875.10

MPICH_G2G_PIPELINE=1

export MPICH_G2G_PIPELINE=4

05/03/13

May 3, 2013

OpenACC Accelerator Directives

05/03/13

2

OpenACC is ...

 An API
 Inspired by OpenMP
 Implemented by Cray, PGI, CAPS
 Includes functions to query device(s)

 Evolving
 Plan to integrate into OpenMP
 Support of the 1.0 specification has not resulted in portable code (more later)

It's widely thought that OpenACC will be integrated into the OpenMP
standard in 2013 or 2014. Intel's participation is an open question as
they're currently pursuing their own extensions to OpenMP for XeonPHI
support.

05/03/13

How can I get started with OpenACC?

OpenACC.org
Quick reference guide (OpenMP programmers)
Specifications: 1.0 and 2.0 draft
Classes

OpenACC GPU Prog. Workshop
Joint workshop with PSC, Xsede, Nvidia
Targeted PGI implementation

The OpenACC GPU Programming Workshop has been presented locally via HD Video
as a virtual workshop. Presentation materials are available at the link.

05/03/13

OpenACC on Blue Waters

Cray
module load PrgEnv­cray craype­accel­nvidia35
Caution: OpenMP is also enabled by default
Directly generates ptx assembly for Nvidia accel.

PGI
module load PrgEnv­pgi cudatoolkit
Generates CUDA intermediate

Blue Waters OpenACC compiler table

See the Blue Waters user guide and programming information for the compiler table and
OpenACC discussion.

05/03/13

Support for directives varies: Cray

 61 #pragma acc kernels loop
 62 for(int j = 1; j < n­1; j++)
 63 {
 64 #pragma acc loop gang(16) vector(32)
 65 for(int i = 1; i < m­1; i++)
 66 {
 67 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i­1]
 68 + A[j­1][i] + A[j+1][i]);
 69 }
 70 }

arnoldg@jyc1:~/openacc/wkshp> make laplace2d
cc ­Gp ­h acc,noomp,msgs ­fpic ­dynamic ­c ­o laplace2d.o
laplace2d.c
WARNING: Ignoring gang clause on acc_loop at main:65
WARNING: Ignoring gang clause on acc_loop at main:77

This loop is from the laplace2d.c example code from the OpenACC GPU Programming
Workshop and it works with the PGI compiler without warnings or errors.

05/03/13

Support for directives varies: PGI

39 !$acc data copyin(sendbuf) copyout(recvbuf)
40
41 !$acc host_data use_device(sendbuf,recvbuf)
42 call MPI_ALLTOALL (sendbuf,n,mpi_complex,recvbuf,n,mpi_complex,comm_col,ierr)
43 !$acc end host_data
44
45 !$acc end data

arnoldg@h2ologin1:~/buaria> ftn ­acc test.f90
PGF90­S­0155­A data clause for a variable appears within another region with a data clause
for the same variable sendbuf (test.f90: 41)
PGF90­S­0155­A data clause for a variable appears within another region with a data clause
for the same variable recvbuf (test.f90: 41)
 0 inform, 0 warnings, 2 severes, 0 fatal for MAIN

This code fragment was from a team on Blue Waters that is using the Cray compiler with
some advanced specification-1.0 features to try to improve memory transfer performance
between host and accelerator. The host_data directive is a hint to the compiler to use the
address of the data on the accelerator when possible and streamline the use of memory
bandwidth.

05/03/13

Runtime differences using Cray's examples and PGI compiler:
 [code from : man openacc.examples]

PGI runtime incorrect
 47 !!$ Compute a checksum
 48 !$acc parallel copyin(a)
 49 total = 0
 50 !$acc loop reduction(+:total)
 51 DO j = 1,M
 52 total = total + a(j)
 53 ENDDO
 54 !$acc end loop
 55 !$acc end parallel

PGI runtime valid
 47 !!$ Compute a checksum
 48 total = 0
 49 !$acc kernels loop copyin(a) reduction(+:total)
 50 DO j = 1,M
 51 total = total + a(j)
 52 ENDDO
 53
 54 !$acc end kernels loop

The code snippet here if rom example 4 of the openacc.examples Cray manual page.
With PGI it compiled without warnings or errors but the checksum is invalid at runtime
when using the parallel directive. The kernels directive yields correct results.

05/03/13

Tuning differences: Cray and PGI
 145 !$acc parallel num_gangs(1) vector_length(3072)
 146 !!$acc kernels
 147 !!data copy(part),copyin(fxy),create(nn,mm,dxp,dyp,np,mp,dx,dy,vx,vy)
 148 do 10 j = 1, nop
 149 c find interpolation weights
 150 nn = part(1,j)
 151 mm = part(2,j)
 152 dxp = part(1,j) ­ real(nn)
 153 dyp = part(2,j) ­ real(mm)
 154 nn = nn + 1
 155 mm = mm + 1
 156 amx = 1.0 ­ dxp
 157 mp = mm + 1
 158 amy = 1.0 ­ dyp
 159 np = nn + 1
 160 c find acceleration
 161 dx = dyp*(dxp*fxy(1,np,mp) + amx*fxy(1,nn,mp)) + amy*(dxp*fxy(1,np
 162 1,mm) + amx*fxy(1,nn,mm))

arnoldg@jyc1:~/Mori/pic2.0­acc­f> ftn ­h acc ­c push2.f
!$acc parallel num_gangs(1) vector_length(3072)
ftn­7271 crayftn: WARNING GPUSH2L, File = push2.f, Line = 145
 Unsupported OpenACC vector_length expression: Converting 3072 to
1024.

This code is a tuning exercise with a serial kernel for one of the Blue Waters science
teams. The PGI compiler showed good speedup with the directive at line 45 (better than
the alternative directives of 46-47). The Cray compiler does not accept that directive as
written and performance was reduced in this case for the Cray version of the code.

05/03/13

OpenACC performance tools

Cray
Perftools support
Accelerator counters
A multi­step process (for now)
CRAY_ACC_DEBUG=1|2|3

PGI
Profiling via PGI_ACC_TIME=1

 Tracing via PGI_ACC_NOTIFY=1|3

See the Blue Waters documentation

Cray provides access to the Accelerator hw counters, but you can only get 1 set of
counters per aprun invocation. PGI profiling is quick and easy to use. It's slightly more
intuitive than the CRAY_ACC_DEBUG options.

05/03/13

OpenACC pitfalls

Beware of silent failure modes
Omitting craype­accel­nvidia35 or cudatoolkit
­g flag breaks the Cray OpenACC runtime environment

CRAY_ACC_ERROR ...
CRAY_CUDA_PROXY=1 (sharing the Accelerator in a node)

If code fits within the Accelerator memory, results are fine
CUDA_ERROR_OUT_OF_MEMORY

 Incorrect results but no CUDA_ errors

OpenMP and OpenACC should not be nested within your code at this time

Both programming environments are subject to a variety of silent failures at compile or
runtime. Error handling for the OpenACC programming environment is still somewhat
immature.

Cray does not allow any nesting of OpenACC within OpenMP regions. PGI allows it but
care must be taken with the API to manage threads sharing the GPU. NCSA does not
recommend this programming practice at the current time.

It's ok to use OpenMP and OpenACC in the same code if they target separate loops or
sections of code.

05/03/13

May 3, 2013

CRAY_CUDA_PROXY
MPICH_RDMA_ENABLED_CUDA
MPICH_G2G_PIPELINE

This section covers GPU Hyper-q virtualization (CRAY_CUDA_PROXY) and work
Cray is doing toward RDMA support.

05/03/13

export CRAY_CUDA_PROXY=[1|0]

From the man pages [man aprun]:

Enables execution in simultaneous contexts for GPU­equipped nodes (
Hyper Q) when set to 1 or on. The default is 1. Debugging is only
supported with the CUDA proxy disabled. To disable CUDA proxy,
set to 0 or off

module unload cray-mpich2

module load cray-mpich2/5.6.4

export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH

Note the debug requirement for CRAY_CUDA_PROXY set disabled. At the current
software revision, CRAY_CUDA_PROXY is not defaulting to enabled as suggested in
the manual page. It's best to manually set it if you plan to share a GPU with MPI ranks or
OpenMP threads on a host.

The module noted for mpich2 was used with MPICH_RDMA_ENABLED_CUDA as it's
a newer feature for cray-mpich2.

05/03/13

Comparison with a serial OpenACC
sample code
time aprun -n 2 -N 1 ./fpic2_acc
 Initial Field, Kinetic and Total Energies:
 0.0000000E+00 0.1677870E+08 0.1677870E+08
 Initial Field, Kinetic and Total Energies:
 0.0000000E+00 0.1677870E+08 0.1677870E+08
…
real 0m41.581s
user 0m0.136s
sys 0m0.040s

time aprun -n 2 -N 2 ./fpic2_acc
 Initial Field, Kinetic and Total Energies:
 0.0000000E+00 0.1677870E+08 0.1677870E+08
 Initial Field, Kinetic and Total Energies:
 0.0000000E+00 0.1677870E+08 0.1677870E+08
…
real 0m53.325s
user 0m0.136s
sys 0m0.036s

2 GPUs

Sharing 1 GPU

The sample PRAC kernel shown is serial, but running 2 copies of it highlights the use of
CRAY_CUDA_PROXY=1.

05/03/13

CRAY_CUDA_PROXY=0, error message

time aprun -n 2 -N 2 ./fpic2_acc
call to cuCtxCreate returned error 101: Invalid device
CUDA driver version: 5000
[NID 00080] 2013-05-09 10:30:50 Apid 170090: initiated application termination
Application 170090 exit codes: 1
Application 170090 resources: utime ~4s, stime ~0s, Rss ~270056, inblocks ~1659,
outblocks ~4288

real0m4.868s
user0m0.120s
sys 0m0.048s

With hyper-q disabled, applications will fail if they're expecting multiple GPU contexts
per node.

05/03/13

MPICH_RDMA_ENABLED_CUDA
Module load cray­mpich2/5.6.4 or later
See also: GPUDirect

From the man pages [man mpi]:

 MPICH_RDMA_ENABLED_CUDA
 If set, allows the MPI application to pass GPU pointers
 directly to point­to­point and collective communication
 functions. Currently, if the send or receive buffer for a
 point­to­point or collective communication is on the GPU,
 the network transfer and the transfer between the host CPU
 and the GPU are pipelined to improve performance. Future
 implementations may use an RDMA­based approach to write/read
 data directly to/from the GPU, bypassing the host CPU.

 Default: not set

Cray is working toward pure RDMA from GPU to GPU over the Gemini network, but
that functionality is not fully implemented. In the meantime, they've optimized the
memory transfers via pipelining and they support the API (placing GPU buffers directly
into MPI calls).

Using MPICH_RDMA_ENABLED_CUDA implies changing your code (or using code
that's already been changed from a cluster where this is supported). See also
https://developer.nvidia.com/gpudirect .

05/03/13

MPICH_G2G_PIPELINE

 MPICH_G2G_PIPELINE
 If nonzero, the device­host and network transfers will be
 overlapped to pipeline GPU­to­GPU transfers. Setting
 MPICH_G2G_PIPELINE to N will allow N GPU­to­GPU messages to
 be efficiently in­flight at any one time. If
 MPICH_G2G_PIPELINE is nonzero but MPICH_RDMA_ENABLED_CUDA is
 disabled, MPICH_G2G_PIPELINE will be turned off. If
 MPICH_RDMA_ENABLED_CUDA is enabled but MPICH_G2G_PIPELINE is
 0, the default value is set to 16. Pipelining is never used
 on Aries networks for messages with sizes >= 8 KB and < 128
 KB.

 Default: not set

This environment variable is available to assist with tuning
MPICH_RDMA_ENABLED_CUDA. It should be unset, or set to something > 1 .

05/03/13

MPICH_RDMA_ENABLED_CUDA ,
MPICH_G2G_PIPELINE (latency)

arnoldg@jyc1:~/osu-micro-benchmarks-4.0.1/mpi/collective>
> export MPICH_G2G_PIPELINE=1
> aprun -n 32 -N 1 ./osu_alltoall -d openacc | tail -4
Size Avg Latency(us)
262144 15232.80
524288 23825.47
1048576 39943.72

> export MPICH_G2G_PIPELINE=4
> aprun -n 32 -N 1 ./osu_alltoall -d openacc | tail -4
262144 10815.72
524288 17106.18
1048576 28805.91

Don't set
MPICH_G2G_PIPELINE=1

set
MPICH_G2G_PIPELINE=4
(or greater, remember Cray
defaults it to 16 if unset)

The OSU micro benchmarks were built with PrgEnv-cray, craype-accel-nvidia35, and
setting configure to cross-compile (--host=cray). Some minor hacking of the resultant
Makefiles was also needed (removing -g, removing an unresolved malloc replacement).

The status of the PGI compiler support for addressing GPU buffers directly in MPI
routines has not been investigated. I've seen at least one case where it was not supported
and the compiler threw an error so for these examples I stuck with PrgEnv-cray.

05/03/13

MPICH_RDMA_ENABLED_CUDA ,
MPICH_G2G_PIPELINE (bandwidth)

> aprun -n 2 -N 1 ./osu_bibw D D
OSU MPI-OPENACC Bi-Directional Bandwidth Test v4.0.1
Send Buffer on DEVICE (D) and Receive Buffer on DEVICE (D)
Size Bi-Bandwidth (MB/s)
131072 631.32
262144 931.28
524288 1227.69
1048576 1417.43
2097152 1676.00
4194304 1649.22

mpi/pt2pt> aprun -n 2 -N 1 ./osu_bibw D D | tail -7
131072 639.54
262144 946.22
524288 1253.30
1048576 1433.01
2097152 1700.69
4194304 1875.10

MPICH_G2G_PIPELINE=1

export MPICH_G2G_PIPELINE=4

The bi-directional bandwidth test doesn't show quite the improvement as the alltoall
latency, but then again it's limited to only 2 ranks.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

